

Review Open Access

Distribution, Status, and Threats to Reptile and Amphibian Species in the Vicinity of Pakistan's Ramsar

Saira Batool^{1*}, Muhammad Altaf¹, Muhammad Junaid² and Muhammad Samar Hussain Khan³

- 1. Institute of Forest Sciences, The Islamia University of Bahawalpur, Pakistan
- 2. Department of Zoology, Wildlife and Fisheries, PMAS, University Arid Agriculture Rawalpindi, Pakistan
- 3. Ministry of Climate Change and Environmental Coordination, Pakistan

*Corresponding author e-mail: saira.batool1233@gmail.com

SUMMARY

Wetlands in Pakistan cover an area of 1,711153 hectares. Notably, freshwater account for 73.9% of this wetland area, while coastal wetlands make up 26.1%. Pakistan is home to 19 Ramsar Sites. This review aims to document the distribution, status and threats in reptile and amphibian species in the vicinity of Ramsar sites. Data were collected from various sources, including articles, field guides, books, reports, and websites. The documentation revealed that 133 reptile species and 10 amphibian species have been recorded by herpetologists in Pakistan's Ramsar sites. Of these, 98 reptile species are classified as Least Concern (LC), indicating stable populations, while 10 species of reptile are classified as Data Deficient (DD). Furthermore, 6 reptile species are categorized as Near Threatened (NT), 10 as Vulnerable (VU), and 7 as Endangered (EN). Alarmingly, two reptile species, Eretmochelys imbricata and Gavialis gangeticus, are listed as Critically Endangered (CR) by IUCN. In contrast, all 10 amphibian species are classified as Least Concern (LC). The survey documented 133 reptile species, showcasing significant variation in their frequency of occurrence. Among these, the Yellow-bellied House Gecko, Indian Fringe-fingered Lizard, and Smooth Spectacled Lacerta were the most widely distributed, each observed at 19 Ramsar sites. Similarly, all 10 amphibian species were recorded across these sites, with varying frequencies. Notably, the Indus Valley Toad and Skipper Frog were the most prevalent, each found at all 19 Ramsar sites, indicating their broad distribution and adaptability.

Keywords: Reptiles, Amphibians, Ramsar sites, Critically Endangered, IUCN

Citation: Batool, S., M. Altaf, M. Junaid, and M. S. H. Khan. 2025. Distribution, Status, and Threats to Reptile and Amphibian Species in the Vicinity of Pakistan's Ramsar. 9. 310-332.

Received 04 July, 2025 Revised 11 August, 2025 Accepted 30 August, 2025 Published 10 September, 2025

INTRODUCTION

TOPOGRAPHY OF PAKISTAN

The topography of Pakistan comprises a diverse range of landscapes, including mountains (Rasul and Hussain, 2015), deserts (Abd El-Ghani et al., 2017), wetlands (Khan and Arshad, 2014), and forests (Altaf, 2016; Altaf, 2010; Bhatti, 2011). In northern Pakistan, three major mountain ranges converge; the Karakoram, the Himalayas, and the Hindu Kush. The Himalayas, often regarded

as the "Roof of the World" by the people of Central and South Asia, extend approximately 2,500 kilometers from east to west. This range is bordered to the northwest by the Hindu Kush and to the north by the Karakoram. The geological contrasts among these ranges present a fascinating area of study (Rasul and Hussain, 2015).

Pakistan's deserts span 11 million hectares, accounting for 13.82 percent of the country's total area, primarily located in the central and southern regions. The dunes in these areas can reach heights of up to 150 meters and vary in elevation from 100 to 1000 meters above sea level. These deserts rely on the monsoon season for moisture and rainfall. The major deserts of Pakistan include the Thal Desert, Cholistan Desert, Nara Desert, Tharparkar Desert, and Kharan Desert (Abd El-Ghani et al., 2017).

Pakistan, which is recognized as an arid region, nevertheless has more than 1,711153 hectares of wetlands. These include 225 important wetlands, 19 of which are recognized as Ramsar Sites (Ahmad et al., 2019). Wetlands of international importance under the Ramsar Convention on Wetlands. The types of wetlands illustrate the course of the Indus River from glaciers and high alpine lakes, through riverine and freshwater lakes, to the coastal wetlands of the Indus Delta. The wetlands offer unappreciated benefits and services, which include provisioning: the production of food and fiber, water balance, groundwater recharge, and flood and storm mitigation as well as cultural and social functions which include sacred and religious importance, tourism and recreation, and supporting functions like soil formation and sediment retention (Altaf et al., 2014a).

Pakistan faces significant challenges in maintaining its forest cover, which constitutes less than 4.68% of its total land area, due to dry and semi-arid conditions and human-induced issues. Illegal logging, timber harvesting, and small-scale farming contribute to the annual degradation of these forests. The country's diverse ecosystems, including alpine and subtropical forests, mangroves, and deserts, encounter distinct problems. The mangrove forests of the Indus Delta play a vital role in coastal protection and marine biodiversity. Addressing deforestation requires coordinated efforts to preserve and sustainably manage Pakistan's varied forest ecosystems (Bhatti, 2011).

Species of Amphibian and Reptile of Pakistan, a work by Khan (2006a), is the most reliable source of information on the herpetofauna of Pakistan and represents a systematized document of the same. It is a wide-ranging monograph that includes descriptions of the taxonomy, morphology, distribution, ecology, and conservation of 24 amphibian and over 195 reptilian species recorded in the country. The paper emphasizes that Pakistan is located in a special biogeographical zone between the Palearctic, Oriental, and Ethiopian realms, thus leading to the formation of a rich and diverse assemblage of herpetofauna. Along with setting the stage for faunal catalogues and ecological investigations, the compilation by Khan also highlights the conservation issues affecting the taxa, including habitat loss, overexploitation, and anthropogenic pressures.

Like all species, reptile and amphibians serve as regulators of ecological balance by managing insect populations, being consumed by organisms within higher trophic levels, and bioindicators for the health of ecosystems. Unfortunately, their ecological importance has been least appreciated within species of reptile and amphibian studies in Pakistan, particularly in regions encompassing the Ramsar Sites. In addition, the rapidly growing anthropogenic threats of habitat destruction, pollution, increasing overexploitation, and climate change have begun to impose chronic stress on the survival of these organisms. However, there have been rare studies regarding their extent, status, and the nature of threats in and around Ramsar Sites in Pakistan. The absence of these baseline data has resulted in challenges in effective management of these sites. It is, therefore, of vital importance to assess the reptile and amphibian species and the threats to their existence around these habitats in Pakistan to facilitate their site-specific conservation. The objectives of the study are as follows: to assess the distribution and diversity of reptile and amphibian species in and around the Ramsar Sites of Pakistan, to determine the population status of documented species, and to recognize and evaluate the primary threats impacting these reptile and amphibian species within the region.

METHODOLOGY

Data were collected through Books (Khan, 2006a, 2021), Field guide (Khan, 2002a; Zahid, 2025), research articles (Khan, 2002b; Khan, 2006b; Noureen et al., 2012; Sarwar et al., 2016), reports (MFF, 2018), websites i.e. IUCN (https://www.iucnredlist.org/), and GBIF (https://www.gbif.org/). The study was descriptive and exploratory in order to establish understanding of Reptile and Amphibian diversity associated with Ramsar Sites of Pakistan. The data were examined with Microsoft Excel, which enabled effective organization, tabulation, and initial statistical evaluation. OriginPro statistical software was utilized for graphical representation to create precise and high-quality graphs, facilitating accurate visualization and effective interpretation of the results.

RAMSAR SITES

Ramsar Sites, are internationally significant wetlands designated by the Ramsar Convention on Wetlands, an international treaty established at Ramsar, Iran, in 1971. Currently, there are over 2500 Ramsar Sites worldwide, covering an area greater than that of Mexico, totaling around 2.5 million square kilometers (https://www.ramsar.org).

Ramsar Sites of Pakistan

In 1976 Pakistan joined the Ramsar Convention on Wetlands (Altaf et al., 2014b). There are 19 Ramsar Sites (Figure 1) with a total land area of 1,343,627 ha (https://www.ramsar.org). Out of the total 19 Ramsar Sites of the country 5 Ramsar sites are present in Balochistan i.e. Astola Island (Gwadar), Hub Dam (Lasbella), Jiwani Coastal (Gwadar), Miani Hor (Lasbella) and Ormara Turtle Beach (Gwadar); 2 Ramsar sites are present in Khyber Pakhtunkhwa i.e. Tanda Dam (Kohat) and Thanedar Wala (Bannu); 3 Ramsar Sites are present in Punjab i.e. Chashma Barrage (Mianwali), Taunsa Barrage (Muzaffargarh) and Uchhali Complex (Khushab); and 9 Ramsar sites are preset in Pakistan i.e. Deh Akro-II

(Nawabshah), Drigh Lake (Larkana), Haleji Lake (Thatta), Indus Delta (Badin and Thatta), Indus Dolphin Reserve (Thatta), Jubho lagoon (Thatta), Kinjhar (Kalri) Lake (Thatta), Nurri Lagoon (Badin) and Rann of Kutch (Badin) (WWF, 2024).

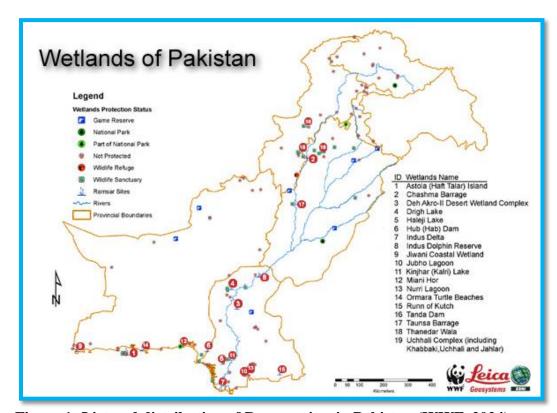


Figure 1: List and distribution of Ramsar sites in Pakistan (WWF, 2024).

AMPHIBIAN AND REPTILE OF RAMSAR SITES OF PAKISTAN

During the analysis, it was noted that 133 reptilian species (i.e. Geoclemys hamiltonii, Ablepharus grayanus, Ablepharus pannonicus, Acanthodactylus blanfordii, Acanthodactylus cantoris, Acanthodactylus micropholis, Agamura persica, Amphiesma stolatum, Argyrogena fasciolata, Aspideretes gangeticus, Astrotia stokesii, Asymblepharus himalayanus, Boiga, trigonata, Bungarus caeruleus, Bungarus sindanus, Bungarus sindanus razai, Bunopus tuberculatus, Calotes minor, Calotes versicolor, Calotes versicolor faroogi, Caretta caretta, Chalcides ocellatus, Chamaeleo zeylanicus, Chelonia mydas, Chitra indica, Crocodylus palustris, Crossobamon orientalis, Cyrtopodion agamuroides, Cyrtopodion indusoani, Cyrtopodion kachhense, Cyrtopodion kachhense ingoldbyi, Cyrtopodion kohsulaimanai, Cyrtopodion scabrum, Daboia russelii, Dermochelys coriacea, Echis carinatus, Echis carinatus astolae, Eirenis persicus, Enhydris pakistanicus, Eremias cholistanica, Eremias persica, Eretmochelys imbricate, Eryx conicus, Eryx johnii, Eublepharis macularius, Eurylepis taeniolatus, Eutropis dissimilis, Eutropis macularia, Fowlea piscator, Gavialis gangeticus, Geochelone elegans, Hardella thurjii, Hemidactylus brookii, Hemidactylus flaviviridis, Hemidactylus frenatus, Hemidactylus leschenaultia, Hemidactylus persicus, Hemidactylus robustus, Hemidactylus triedrus, Hemidactylus turcicus, Hemorrhois ravergieri, Hydrophis schistose, Hydrophis cyanocinctus, Hydrophis fasciatus, caerulescens, Hydrophis *Hydrophis* lapemoides, Hydrophis mamillaris, Hydrophis ornatus, Hydrophis platurus, Hydrophis spiralis, Hydrophis viperinus, Indotyphlops braminus, Indotyphlops porrectus, Kachuga smithii, Lapemis curtus, Laudakia agrorensis, L. liratus, L. melanura, L. nupta, L. tuberculata, Lepidochelys olivacea, Lissemys punctate, Lycodon aulicus, L. striatus, Lygosoma punctate, Lytorhynchus paradoxus, L. ridgewayi, Mesalina brevirostris, Mesalina watsonana, Microcephalophis cantoris, Microcephalophis gracilis, Myriopholis blanfordii, Myriopholis macrorhyncha, Naja naja, Naja oxiana, Nilssonia hurum, Novoeumeces blythianus, Novoeumeces zarudnyi, Oligodon russelius, O. taeniolatus, Ophiomorus blanfordi, O. raithmai, O. tridactylus, Ophisops jerdonii, Pangshura tecta, Paralaudakia caucasia, Paralaudakia microlepis, Phrynocephalus ornatus, P. scutellatus, Platyceps rhodorachis, P. ventromaculatus, Psammophis condanarus, P. leithii, Psammophis schokari, Pseudocerastes persicus Ptyas Ptyodactylus homolepis, Python molurus, mucosa. Saara hardwickii. Spalerosophis arenarius, S. diadema, Telescopus rhinopoma, Teratolepis fasciata, Teratoscincus microlepis, Testudo horsfieldii, Trapelus agilis, T. megalonyx, T. rubrigularis, Tropiocolotes persicus, Varanus bengalensis, V. flavescens, V. griseus caspius and Xenochrophis cerasogaster) are documented in the vicinity of Ramsar Sites (Table 1), belonging to 25 families (i.e. Gekkonidae, Colubridae. Scincidae, Elapidae, Agamidae, Lacertidae. Cheloniidae. Geoemydidae, Trionychidae, Viperidae, Natricidae, Psammophiidae, Varianidae, Erycidae, Leptotyphlopidae, Testudinidae, Typhlopidae, Chamaeleonidae, Crocodylidae, Dermochelyidae, Eublepharidae, Gavialidae, Homalopsidae, Pythonidae, Sphaerodactylidae) (Figure 2) and 3 orders (i.e. Testudines, Crocodylia and Squamata) (Figure 3).

A total of 133 species of reptile were recorded at the referred sites, exhibiting significant variation in their frequency of occurrence. Among these, the Yellow-bellied House Gecko, Indian Fringe-fingered Lizard, and Smooth Spectacled Lacerta were the most widely distributed, each observed at the 19 Ramsar Sites across Pakistan. Additionally, the Agilis Agama, Afghan Ground Agama, Changeable Lizard, Ribbon-sided Skink, Indian or Bengal Monitor Lizard, Brahminy Blind Snake, Hook-snouted Worm Snake, Forskål's Sand Snake, and Diadem Snake were also abundant, being recorded at 18 Ramsar sites. The Common Leopard Gecko, Persian Gecko, Punjab Snake-eyed Lacerta, and Red Sand Boa were found at 17 Ramsar Sites. In contrast, the Gharial, Nikolsky's Spider Gecko, Sulaiman Range Gecko, Mediterranean Gecko, Pakistan Fanfingered Gecko, Soan Gecko, Small-scaled Wonder Gecko, Small-scaled Rock Agama, Kashmir Rock Agama, Northern Forest Lizard, Gray Toad-headed Agama, Asian Chameleon, Persian Racerunner, Cholistani Racerunner, Red-strip Skink, Spotted Whip Snake, Afghan Awl-headed Snake, Indian Desert Tiger Snake, Northern Punjab Krait, and Astola Saw-scaled Viper were each reported from only a single Ramsar Site. These species are less widely distributed in Pakistan (Figure 4).

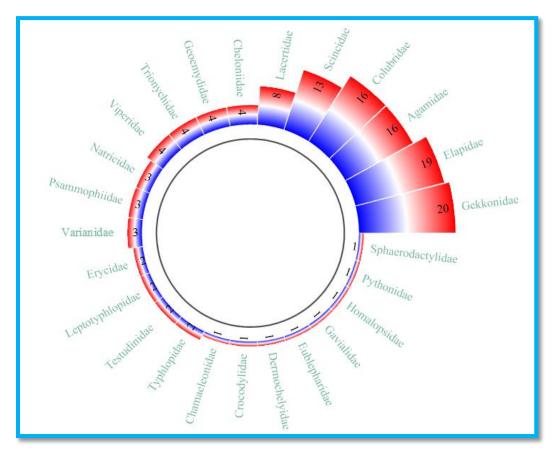


Figure 2: Families of reptile in the study area.

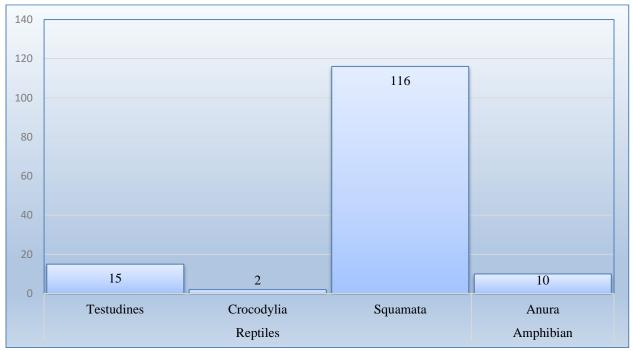


Figure 3: Orders of reptile and amphibian in the study area.

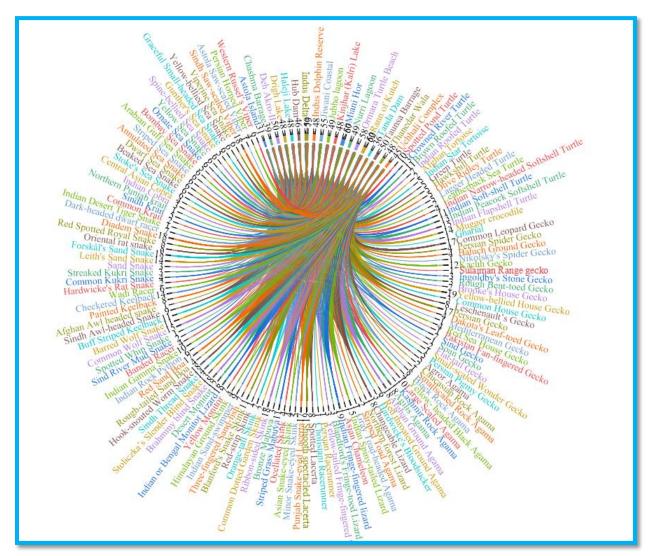


Figure 4: Chord diagram of Reptilians' species in Ramsar sites of Pakistan.

The current study revealed significant variation in the total number of reptile species across the 19 Ramsar Sites. The highest species richness was found at the Indus Delta, which hosted 73 species, followed by Miani Hor with 67 species and the Rann of Kutch with 62 species of reptile, highlighting these areas as particularly rich in species of reptile. Ormara Turtle Beach and Jiwani Coastal also supported a relatively high number of species, with 58 and 55 species of reptile, respectively. Moderate species abundance was documented at several Ramsar Sites, including Deh Akro-II and Taunsa Barrage, each with 50 species, and Jubho Lagoon and Nurri Lagoon, and each with 49 species. Drigh Lake, Haleji Lake, Indus Dolphin Reserve, and Kinjhar (Kalri) Lake each hosted 48 species, while Thanedar Wala also supported 48 species, indicating consistent population levels across these locations. Slightly lower species richness was observed at Hub Dam with 46 species and Uchhali Complex with 45 species. Chashma Barrage and Tanda Dam had comparatively fewer species, with 39 and

36, respectively. The lowest richness was recorded at Astola Island, which had only 31 species of reptile (Figure 5).

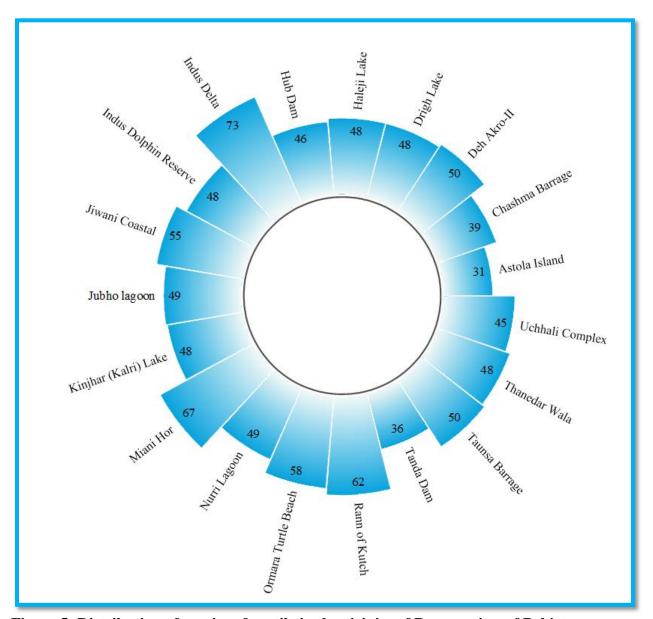


Figure 5: Distribution of species of reptile in the vicinity of Ramsar sites of Pakistan.

During the analysis, it was noted that 10 amphibian species (i.e. Chrysopaa sternosignata, Duttaphrynus olivaceus, Duttaphrynus stomaticus, Euphlyctis cyanophlyctis, Fejervarya limnocharis, Hoplobatrachus tigerinus, Microhyla ornate, Minervarya syhadrensis, Pseudepidalea pseudoraddei and Sphaerotheca breviceps) were documented in the vicinity of Ramsar Sites (Table 2), belonging to 25 families (i.e. Ranidae, Bufonidae and Microhylidae) (Figure 6) and 1 order (i.e. Anura) (Figure 3).

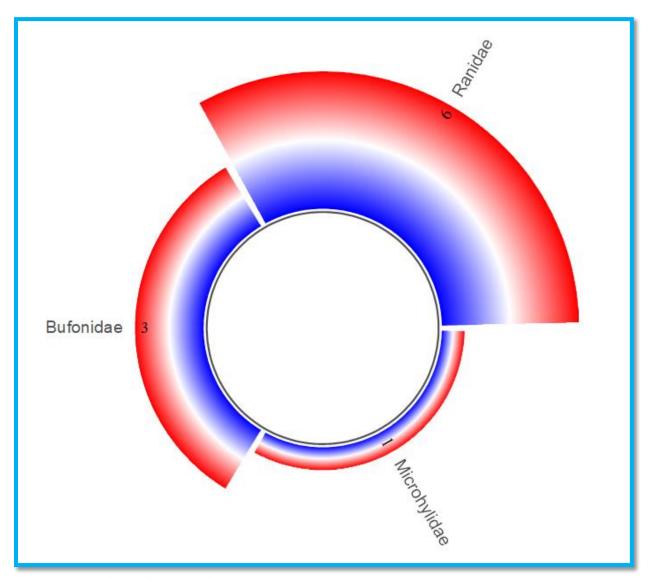


Figure 6: Families of amphibian in the study area.

All species of amphibian were recorded across 19 Ramsar sites, with varying frequencies of occurrence. The Indus Valley Toad and Skipper Frog were the most prevalent, each observed at all 19 Ramsar sites in Pakistan, indicating their wide distribution and adaptability. The Indian Burrowing Frog and Indian Bullfrog were were relatively common, with 13 and 12 Ramsar sites in Pakistan, respectively. Moderate occurrences were noted for the Bombay Wart Frog (reported from 6 Ramsar sites in Pakistan) and Olive Toad (reported from 4 Ramsar sites in Pakistan). In contrast, the Ant Frog and Boie's Wart Frog were less frequently observed, each reported from only 3 Ramsar sites in Pakistan. Murray's Frog was recorded just twice, while the Swat Green Toad was the rarest, with only a single record. This pattern suggests that while a few species are abundant and widely distributed, several others have limited occurrences and may require targeted conservation efforts (Figure 7).

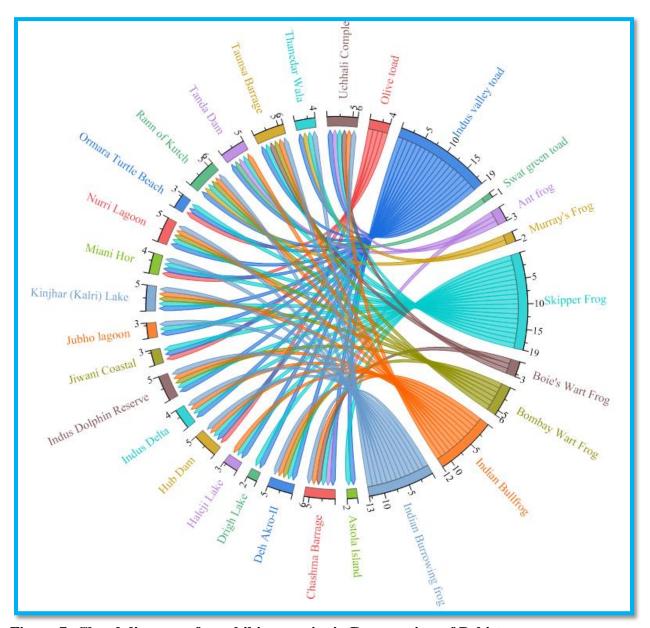


Figure 7: Chord diagram of amphibian species in Ramsar sites of Pakistan.

During the present study, amphibian species were recorded from all 19 Ramsar sites in Pakistan, showing variation in their species richness. The highest number of amphibian species (6 each) was observed at Chashma Barrage, Rann of Kutch, Taunsa Barrage, and Uchhali Complex, indicating these Ramsar sites as comparatively more diverse habitats. Moderate species were documented at several sites, such as Deh Akro-II, Hub Dam, Indus Dolphin Reserve, Kinjhar (Kalri) Lake, Nurri Lagoon, and Tanda Dam, each with 5 species of amphibian, while Indus Delta, Miani Hor, and Thanedar Wala supported 4 amphibian species each. Lower richness was recorded at Haleji Lake, Jiwani Coastal, Jubho Lagoon, and Ormara Turtle Beach with 3 species of amphibian, whereas the least diverse

Ramsar sites were Astola Island and Drigh Lake, each having only 2 species (Figure 8).

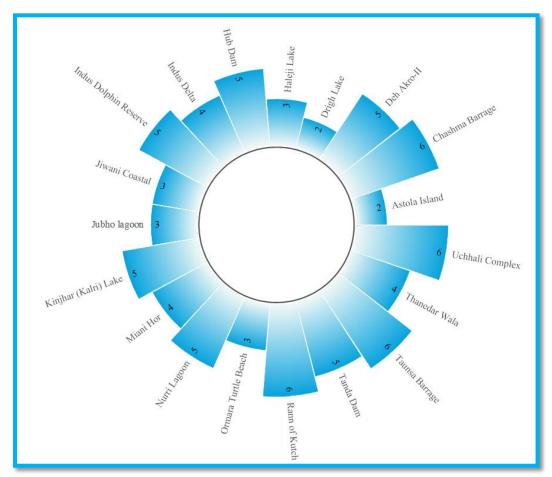


Figure 8: Distribution of species of reptile in the vicinity of Ramsar sites of Pakistan.

A total of 98 reptile species (i.e. Eublepharis macularius, Agamura persica, Bunopus tuberculatus, Cyrtopodion agamuroides, C. kachhense, C. kohsulaimanai, C. kachhense ingoldbyi, C. scabrum, Hemidactylus brookii, H. flaviviridis, H. frenatus, Hemidactylus leschenaultia, H. persicus, H. triedrus, H. robustus, Crossobamon orientalis, Cyrtopodion indusoani, turcicus, H. Teratoscincus microlepis, Tropiocolotes persicus, Laudakia agrorensis, Paralaudakia caucasia, Paralaudakia microlepis, Laudakia melanura, Laudakia liratus, Laudakia nupta, Laudakia tuberculata, Trapelus agilis, Trapelus megalonyx, Calotes minor, Calotes versicolor, Phrynocephalus ornatus, Phrynocephalus scutellatus, Chamaeleo zeylanicus, Acanthodactylus cantori, A. blanfordii, A. micropholis, Eremias persica, Mesalina brevirostri, Mesalina watsonana, Ophisops jerdonii, Ablepharus grayanus, Ablepharus pannonicus, Chalcides ocellatus, Eutropis dissimilis, Eutropis macularia, Eurylepis taeniolatus, Lygosoma punctate, Novoeumeces blythianus, Ophiomorus blanfordi, Ophiomorus raithmai, Ophiomorus tridactylus, Asymblepharus himalayanus,

Varanus griseus caspius, Indotyphlops braminus, Indotyphlops porrectus, Myriopholis macrorhyncha, Boiga trigonata, Argyrogena fasciolata, Enhydris pakistanicus, Hemorrhois ravergieri, Lycodon aulicus, Lycodon striatus, Amphiesma stolatum, Lytorhynchus paradoxus, Lytorhynchus ridgewayi, Fowlea piscator, Platyceps rhodorachis, Platyceps ventromaculatus, Oligodon russelius, Oligodon taeniolatus, Psammophis condanarus, Psammophis leithii, Psammophis schokari, Ptyas mucosa, Spalerosophis arenarius, Spalerosophis diadema, Eirenis persicus, Bungarus caeruleus, Bungarus sindanus, Bungarus sindanus razai, Naja naja, Astrotia stokesii, H. schistose, H. caerulescens, H. cyanocinctus, H. fasciatus, H. lapemoides, Hydrophis ornatus, Hydrophis spiralis, Lapemis curtus, Microcephalophis gracilis, Hydrophis platurus, Hydrophis viperinus, Echis carinatus, Echis carinatus astolae, Pseudocerastes persicus and Daboia russelii) are classified as Least Concern (LC) indicating stable populations, while ten species of reptile (i.e. Ptyodactylus homolepis, Teratolepis fasciata, Trapelus rubrigularis, Calotes versicolor farooqi, Eremias cholistanica, Novoeumeces zarudnyi, Myriopholis blanfordii, Telescopus rhinopoma, Hydrophis mamillaris and Microcephalophis cantoris) are classified as Data Deficient (DD). Six reptile species (i.e. Kachuga smithii, Varanus bengalensis, Eryx conicus, Eryx johnii, Python molurus and Naja oxiana) are categorized as Near Threatened (NT), while ten are classified as Vulnerable (VU). Additionally, seven reptile species (i.e. Geoclemys hamiltonii, Hardella thurjii, Chelonia mydas, Chitra indica, Aspideretes gangeticus, Nilssonia hurum and Varanus flavescens) are considered Endangered (EN). Alarmingly, two reptile species (i.e. Eretmochelys imbricata and Gavialis gangeticus) are listed as Critically Endangered (CR) (Figure 9 and Table 1). While all 10 species of amphibians are classified as Least Concern (LC), olivaceus, **Duttaphrynus Duttaphrynus** stomaticus, Pseudepidalea pseudoraddei. Microhyla ornate, Chrysopaa sternosignata, **Euphlyctis** cyanophlyctis, Fejervarya limnocharis, Minervarya syhadrensis, Hoplobatrachus tigerinus, and Sphaerotheca breviceps (Figure 9 and Table 2).

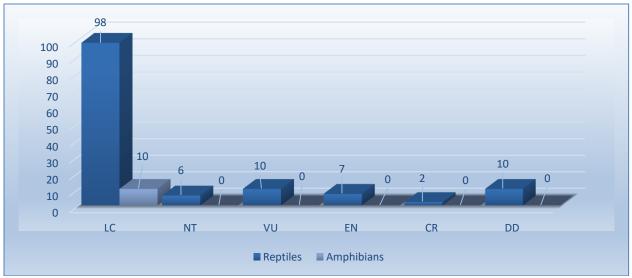


Figure 9: Status of retiles and amphibian species in the vicinity of Ramsar Sites of Pakistan.

THREATS

The following species of reptile are facing high level of threats:

Hawksbill turtles Eretmochelys imbricata

The Hawksbill Turtle was last evaluated for The IUCN Red List of Threatened Species in 2008. *E. imbricata* is categorized as Critically Endangered (CR) based on criteria A2bd (Mortimer and Donnelly, 2008). Key threats to Hawksbill turtles include the tortoiseshell trade, egg collection, and habitat destruction. The tortoiseshell trade has significantly impacted Hawksbill populations worldwide, with historical trade statistics highlighting the severity of the issue (Meylan and Donnelly, 1999).

Egg collection remains a big concern, particularly in Southeast Asia, where utilization is approaching 100% in some locations. Hawksbills are also taken for meat; fisherman frequently use them as bait or accidently catch them while fishing. The degradation of nesting grounds owing to tourism as well as coastal development has a significant impact on Hawksbill nesting, especially in areas like as the Western Indian Ocean, where human interference can disrupt nesting patterns (Shanker and Pilcher, 2003).

Additionally, Hawksbills depend on coral reefs for foraging, and climate-induced coral bleaching poses a severe danger to these habitats. In some areas, low Hawksbill populations lead to hybridization with other sea turtle species, thereby affecting genetic diversity. Turtles are at significant risk of becoming entangled in fishing gear, with juveniles regularly found in derelict nets and detritus (León and Bjorndal, 2002). Oil pollution also harms Hawksbills, especially in oil-rich locations such as the Middle East (Pashaei et al., 2015).

Tortoiseshell has been a valuable product since prehistoric times. Its trade flourished for centuries, particularly due to European colonial activities and later Japanese craftsmanship. By the mid-twentieth century, Japan became the leading importer of tortoiseshell, significantly contributing to the decline of Hawksbill turtle populations. The detrimental impact of this trade on these turtles has sparked urgent conservation concerns, highlighting the need for continuous protective measures and increased awareness to ensure the species' survival amid ongoing threats from illegal trade and habitat destruction (Mortimer and Donnelly, 2008).

Spotted Pond Turtle Geoclemys hamiltonii

This species was assessed for the IUCN Red List of Threatened Species in 2018. *G. hamiltonii* is classified as Endangered (EN) under the criterion A2cd+4cd. This turtle was widely collected for subsistence and commerce until the early 1990s, when visible trade was discontinued. By the late 1990s, it had resurfaced in the East Asian culinary market. Since 2006, the species has been popular in the East and Southeast Asian pet trade, resulting in widespread illegal trading. Human agricultural land use pressures, unintentional capture in fishing nets, and habitat degradation have all had a substantial influence on the species, as documented in numerous studies and workshops (Praschag et al., 2019).

Gharial Gavialis gangeticus

In 2017, the IUCN Red List of Threatened Species evaluated the Gharial (G. gangeticus) and classified it as Critically Endangered (CR) under category A2bce. Dams, barrages, and other water control systems have led to significant habitat fragmentation and degradation, adversely affecting gharial populations across various river systems. Future construction of more dams and barrages in strategically important habitats, such as the upper Brahmaputra and its tributaries, is predicted to harm local fish stocks that are crucial for the survival of gharials. A notable example of this threat is the rapid decline of the gharial in the Indus River, exacerbated by constructions like the Lloyd Barrage. Similarly, damming on rivers such as the Ramganga, Narayani-Gandak, and Betwa has resulted in drastic declines and local extinctions of the gharial species. Irrigation and hydro projects have also contributed to the gharial's decline by altering hydrology, as seen in the Kosi River, where restoration attempts have only further diminished the gharial population. The removal of water activities, particularly lift stations along the Chambal River, exacerbates the situation by reducing river connectivity, thus increasing risks for gharials, despite the illegality of water diversion. Gharial habitats are likely to face even greater pressures from management programs and proposed upstream projects, underscoring the urgent need for better-informed water management strategies to protect this endangered species (Lang et al., 2019).

Crowned River Turtle Hardella thurjii

The Crowned River Turtle was last assessed for *the IUCN Red List of Threatened Species* in 2018 and is classified as Endangered (EN) under criteria A2bcd+4bcd (Ahmed et al., 2021b). This species has been heavily and extensively harvested for the consumption trade in India, linked to vigorous fishing activities. Similarly, it has been gathered for both consumption and trade export in Bangladesh. No data on its trade is available for Pakistan. There have been instances of trading juveniles as pets. Habitat loss has occurred due to the transformation of wetlands into agricultural land, along with the effects of industrial and agricultural contaminants (fertilizer runoff, sediment buildup), especially impacting marginal regions. Fishing nets pose a danger, particularly to the larger females (Ahmed et al., 2021b; Dutta et al., 2020).

Green Turtle Chelonia mydas

The Green Turtle (*Chelonia mydas*) was last assessed for *The IUCN Red List of Threatened Species* in 2004, where it was classified as Endangered (EN) under criteria A2bd (Seminoff, 2023). Green turtles are particularly vulnerable to population declines due to a range of human-induced threats throughout their life stages. Key risks include the legal harvesting of eggs and adults from nesting beaches, as well as juveniles from foraging grounds, with some countries allowing this practice despite declining subpopulations. Additional incidental threats involve bycatch in fisheries, habitat degradation, and disease. Entanglement in fishing gear, such as drift nets and trawls, is a significant cause of mortality. Habitat degradation impacts both nesting and marine environments,

driven by construction, beach armoring, and sand extraction, resulting in reduced nesting areas and altered animal behavior. Artificial lighting on nesting beaches further disrupts nesting adults and can disorient hatchlings. In marine habitats, pollution from coastal development and increased boat traffic deteriorates ecosystem health, exacerbating issues like Fibropapilloma disease among green turtles. Together, these threats considerably jeopardize the sustainability of green turtle populations (Kasparek et al., 2001; Restrepo et al., 2023; Seminoff, 2023).

Indian Narrow-headed Softshell Turtle Chitra indica

This species was last evaluated for the IUCN Red List of Threatened Species in 2000. *Chitra indica* is classified as Endangered (EN) under criteria A1cd+2cd. Turtles are often caught by humans, both intentionally and as bycatch, as their meat and eggs are regarded as delicacies (IUCN, 2000).

Indian Soft-shell Turtle Aspideretes gangeticus

This species was last evaluated for the IUCN Red List of Threatened Species in 2018, where it was classified as Endangered (EN) under criteria A2d+4d (Ahmed et al., 2021a). This species is heavily exploited for local, regional, and global trade, with significant increases in demand since the late 1990s. The focus of trade has shifted from live specimens to processed meat, particularly 'calipee,' a dried cartilaginous part of the carapace. Between 2000 and 2015, nearly 16,400 live specimens were seized in illegal trade, making it the fourth most confiscated CITES-listed turtle species. Many large shipments of calipee are often not identified by species. Additionally, in regions like the Indus basin, fishermen target this turtle as a perceived trouble, a problem further worsened by habitat destruction in critical areas such as the Ganga and Mahanadi rivers (Ahmed et al., 2021a; Lamichhane and Khadka, 2020; Vyas, 2015).

Indian Peacock Softshell Turtle Nilssonia hurum

This species was most recently evaluated in 2018 for The IUCN Red List of Threatened Species. It is listed as Endangered (EN) under criteria A2d+4d (Das et al., 2021b). There is heavy exploitation of *N. hurum* for local consumption and illegal international trade, especially to East Asia, where trade reached its peak in the late 1990s at 60-80 tons per week. More recently, trends have indicated a shift from live specimens to calipee, which means dried cartilage from the carapace. Illegal trade incidents include confiscations of live specimens and large calipee shipments, although species identification is often lacking in these cases. The volumes of trade in Bangladesh peaked in the late 1980s and early 1990s, amounting to nearly 10,000 metric tons per year. Besides exploitation, threats include habitat destruction in the Ganga, water pollution, and entanglement in fishing nets, requiring continued monitoring and recording of such adverse factors affecting the species (Das et al., 2021b; Ramya Roopa et al., 2024).

Yellow Monitor Varanus flavescens

The Yellow Monitor, scientifically known as *Varanus flavescens*, was last evaluated for inclusion in the IUCN Red List of Threatened Species in 2019 (Das

et al., 2021a). It is categorized as Endangered (EN) according to criteria A2cd. The Gangetic River basin, which is home to a species at risk, is characterized by high human population densities in India, Nepal, and Bangladesh. This species is extensively hunted for its skin and meat and is subject to persecution and recreational killing, especially in India and Nepal. Hunting practices often involve the use of dogs, while young ones fall prey to domestic cats, and their eggs are frequently consumed. During hunting festivals in West Bengal, the species is also targeted. Agricultural activities pose a threat to subpopulations, as mechanized farming methods degrade breeding habitats, particularly in Bangladesh. Habitat encroachment, landfilling, and pollution add further stress to their marshy and wetland environments. In Nepal, poaching and persecution have confined the species to small habitat patches, leading to a population decline. Additionally, roadkills contribute to the species' mortality, exacerbating the threats it faces throughout its range (Das et al., 2021a; Ramya Roopa et al., 2024).

OVERALL THREATS TO REPTILE

Research shows that biodiversity threats significantly impact terrestrial species of reptile, correlating these threats with their extinction risk. Agriculture, urbanization, and hunting are identified as the most significant threats, consistent with earlier studies. Hunting primarily involves the collection of wild reptile species for food, traditional medicine (Adil et al., 2022; Altaf et al., 2018; Faiz et al., 2022; Khan et al., 2024), and the pet trade. Additionally, unintentional bycatch, dislike, fear (Altaf, 2022) and road mortality pose further risks (Ali et al., 2023). Expert assessments agree that land use change and human population growth are the main drivers of reptile decline (Tsianou et al., 2021).

The median likelihood of impact was high in agriculture, which showed a negative correlation with threatened species overall. Logging, while having a low probability of threat, was strongly associated with threatened species. Southeast Asia, Oceania, and South America faced severe impacts from hunting, influenced by factors such as trade and persecution. Additionally, antagonistic associations between the probability of impact and the presence of threatened species were observed, especially in the Caribbean, indicating past extirpations. In Europe, weak associations were noted amid significant pressures from agriculture, pollution, and urbanization (Farooq et al., 2024; Tsianou et al., 2021).

CONCLUSION

The study concludes that various types of wetlands are located in Pakistan, which support diverse species of amphibians and reptiles. These species play an important role in maintaining ecological balance and are considered indicators of healthy ecosystems. Despite their important ecological role, amphibian and reptile species are not considered as priority species for conservation in-general. These species are under threat due to various factors requiring attention for their long-term conservation so that they may continue to play their ecological role. Detailed studies may be undertaken to establish a baseline for these species, which may help to improve conservation efforts for the species and their habitats.

Effective enforcement of relevant laws is crucial to address illegal harvesting and trade in these species.

REFERENCES

- Abd El-Ghani, M. M., F. M. Huerta-Martínez, L. Hongyan, and R. Qureshi. 2017. The deserts of Pakistan Plant responses to hyperarid desert environments. p 547-573. Springer.
- Adil, S. et al. 2022. Cultural and medicinal use of amphibians and reptiles by indigenous people in Punjab, Pakistan with comments on conservation implications for herpetofauna. Animals 12: 2062.
- Ahmad, Z., A. Hussain, and A. Shakeel. 2019. Economics Importance of Wetlands, their Benefits and Values Case of Pakistan.
- Ahmed, M. F., B. C. Choudhury, I. Das, and S. Singh. 2021a. *Nilssonia gangetica:* The IUCN Red List of Threatened Species 2021, IUCN.
- Ahmed, M. F., P. Praschag, and S. Singh. 2021b. *Hardella thurjii*: The IUCN Red List of Threatened Species 2021, IUCN.
- Ali, U. et al. 2023. From Myths to Reality: Understanding the Interplay of Folklore and Herpetofauna Conservation in Punjab. Pakistan. Journal of Wildlife and Ecology 7: 44-56.
- Altaf, M. 2010. Ecology and Diversity of Birds of Head Qadirabad, Gujranwala, Pakistan, Department Wildlife and Ecology, University of Veterinary and Animal
- Altaf, M. 2016. Assessment of avian and mammalian diversity at selected sites along river Chenab, University of Veterinary and Animal Sciences, Lahore, Pakistan.
- Altaf, M. 2022. Study of snakes bites and dry bites-a review. Journal of Wildlife and Ecology 6: 22-31.
- Altaf, M., A. Javid, and M. Umair. 2014a. Biodiversity of Ramsar sites in Pakistan. LAP.
- Altaf, M., A. Javid, and M. Umair. 2014b. Biodiversity of Ramsar Sites in Pakistan: Wildlife and Ecology. LAP LAMBERT Academic Publishing.
- Altaf, M., M. Umair, A. R. Abbasi, N. Muhammad, and A. M. Abbasi. 2018. Ethnomedicinal applications of animal species by the local communities of Punjab, Pakistan. Journal of ethnobiology and ethnomedicine 14: 1-25.
- Bhatti, S. 2011. An over view of forests in Pakistan. World Environmental Day 16.
- Das, A., M. K. Hasan, S. Bhattarai, J. T. Wangyal, and P. Mohapatra. 2021a. *Varanus flavescens*: The IUCN Red List of Threatened Species 2021.
- Das, I., B. C. Choudhury, M. F. Ahmed, P. Praschag, and S. Singh. 2021b. *Nilssonia hurum*: The IUCN Red List of Threatened Species 2021.
- Dutta, S., R. Dubla, and S. Singh. 2020. Crowned River Turtle (*Hardella thurjii*). Basking behav. Herpetological Review 51: 4.
- Faiz, M. et al. 2022. Traditional uses of animals in the Himalayan region of Azad Jammu and Kashmir. Frontiers in Pharmacology 13: 807831.
- Farooq, H., M. Harfoot, C. Rahbek, and J. Geldmann. 2024. Threats to reptiles at global and regional scales. Current Biology 34: 2231-2237. e2232.
- IUCN. 2000. *Chitra indica*: The IUCN Red List of Threatened Species 2000, Asian Turtle Trade Working Group and IUCN.
- Kasparek, M., B. J. Godley, and A. C. Broderick. 2001. Nesting of the green turtle, Chelonia mydas, in the Mediterranean: a review of status and conservation needs. Zoology in the Middle East 24: 45-74.
- Khan, A., and S. Arshad. 2014. Wetlands of Pakistan: distribution, degradation and management. Pakistan Geographical Review 69: 28-45.
- Khan, A. M. et al. 2024. Ethnopharmacological uses of fauna among the people of central Punjab, Pakistan. Frontiers in Veterinary Science 11: 1351693.
- Khan, M. S. 2002a. A Guide to the Snakes of Pakistan. Edition Chimaira Frankfurt am Main.
- Khan, M. S. 2002b. Key and checklist to the lizards of Pakistan. Herpetozoa 15: 99-119.
- Khan, M. S. 2006a. Amphibian and Reptiles of Pakistan. Krieger Publisher Company.
- Khan, M. S. 2021. Herpetology of Pakistan. Zoology Society of Pakistan, Pakistan.
- Khan, M. Z. 2006b. Current status and biodiversity of Indus Dolphin Reserve and Indus Delta wetlands (Ramsar sites). In: Proc. 9th International River Symposium, Brisbane, Australia. p 1-26.
- Lamichhane, S., and B. B. Khadka. 2020. First distribution record of Pangshura flaviventer, Chitra indica, and Aspideretes gangeticus in the major rivers of Chitwan National Park, Nepal. Herpetology Notes 13: 157-159.

- Lang, J., S. Chowfin, and J. P. Ross. 2019. *Gavialis gangeticus*: The IUCN Red List of Threatened Species 2019, IUCN.
- León, Y. M., and K. A. Bjorndal. 2002. Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Marine Ecology Progress Series 245: 249-258.
- Meylan, A. B., and M. Donnelly. 1999. Status justification for listing the hawksbill turtle (Eretmochelys imbricata) as critically endangered on the 1996 IUCN Red List of Threatened Animals. Chelonian conservation and Biology 3: 200-224.
- MFF. 2018. Astola Island First Marine Protected Area in Pakistan, MFF Pakistan, Pakistan.
- Mortimer, J. A., and M. Donnelly. 2008. Eretmochelys imbricata, IUCN SSC Marine Turtle Specialist Group.
- Noureen, U., A. Khan, and M. Arshad. 2012. Exploring illegal trade in freshwater turtles of Pakistan. Rec. Zool. Surv. Pakistan 21: 19-24.
- Pashaei, R., M. Gholizadeh, K. J. Iran, and A. Hanifi. 2015. The effects of oil spills on ecosystem at the Persian Gulf. Int J Rev Life Sci 5: 82-89.
- Praschag, P., M. F. Ahmed, and S. Singh. 2019. Geoclemys hamiltonii, IUCN.
- Ramya Roopa, S., A. Chaudhuri, S. Dey, and U. Mendiratta. 2024. Calipee trade: a pervasive yet under-recognized threat to softshell turtles in South Asia. Chelonian Conservation and Biology: Celebrating 25 Years as the World's Turtle and Tortoise Journal 23: 153-160.
- Rasul, G., and A. Hussain. 2015. Sustainable food security in the mountains of Pakistan: Towards a policy framework. Ecology of food and nutrition 54: 625-643.
- Restrepo, J., E. G. Webster, I. Ramos, and R. A. Valverde. 2023. Recent decline of green turtle Chelonia mydas nesting trend at Tortuguero, Costa Rica. Endangered Species Research 51: 59-72.
- Sarwar, M. et al. 2016. Distribution and current status of amphibian fauna of Pakistan: a review. Electronic Journal of Biology 12: 243-246.
- Seminoff, J. A. 2023. *Chelonia mydas*: The IUCN Red List of Threatened Species 2023, Southwest Fisheries Science Center, U.S and IUCN.
- Shanker, K., and N. J. Pilcher. 2003. Marine turtle conservation in South and Southeast Asia: hopeless cause or cause for hope. Marine Turtle Newsletter 100: 43-51.
- Tsianou, M. A. et al. 2021. The effect of climate and human pressures on functional diversity and species richness patterns of amphibians, reptiles and mammals in Europe. Diversity 13: 275.
- Vyas, R. 2015. Status of Ganges Soft-shell Turtle Nilssonia gangetica amidst deplorable scenarios in urban wetlands of Central Gujarat State, India. Reptile Rap 17: 3-12.
- WWF. 2024. Major Wetlands, WWF, Pakistan.
- Zahid, S. 2025. HUmaray Sanmp (Our Snakes). Independent, Pakistan. 1-66.

Competing interests: Authors have declared that no competing interests exist.

Funding: Authors have no source of funding for this work.

Authors' contributions: Batool and Altaf have designed this project, collected data and written this article; while Junaid and Khan have critically analyzed this article and approved as final.

Table 1: Species of reptiles in Ramsar sites of Pakistan.

Sr.	Common Name	Scientific name	Species authority	Family	Order	Status
1	Mugger crocodile	Crocodylus palustris	Lesson, 1831	Crocodylidae	Crocodylia	VU
2	Gharial	Gavialis gangeticus	Gmelin, 1789	Gavialidae	Crocodylia	CR
3	Agror Agama	Laudakia agrorensis	Stoliczka, 1872	Agamidae	Squamata	LC
4	Caucasian Rock Agama	Paralaudakia caucasia	Eichwald, 1831	Agamidae	Squamata	LC
5	Smalls-caled Rock Agama	Paralaudakia microlepis	Blanford, 1874	Agamidae	Squamata	LC
6	Black Rock Agama	Laudakia melanura	Blyth, 1854	Agamidae	Squamata	LC
7	Yellow- headed Black Agama	Laudakia liratus	Blanford, 1874	Agamidae	Squamata	LC
8	Large Scaled Agama	Laudakia nupta	de Filippi, 1843	Agamidae	Squamata	LC
9	Kashmir Rock Agama	Laudakia tuberculata	Gray, 1827	Agamidae	Squamata	LC
10	Agilis Agama	Trapelus agilis	Olivier, 1804	Agamidae	Squamata	LC
11	Afghan Ground Agama	Trapelus megalonyx	Günther, 1864	Agamidae	Squamata	LC
12	Red throated Ground Agama	Trapelus rubrigularis	Blanford, 1876	Agamidae	Squamata	DD
13	Hardwicke's Bloodsucker	Calotes minor	Hardwicke and Gray, 1827	Agamidae	Squamata	LC
14	Changeable Lizard	Calotes versicolor	Daudin, 1802	Agamidae	Squamata	LC
15	Northern forest Lizard	Calotes versicolor farooqi	Auffenberg and Rehman, 1995	Agamidae	Squamata	DD
16	Striped Toad Agama	Phrynocephalus ornatus	Boulenger, 1887	Agamidae	Squamata	LC
17	Gray Toad-headed Agama	Phrynocephalus scutellatus	Olivier, 1807	Agamidae	Squamata	LC
18	Indian Spiny-tailed Lizard	Saara hardwickii	Gray, 1827	Agamidae	Squamata	VU
19	Asian Chameleon	Chamaeleo zeylanicus	Laurenti, 1768	Chamaeleonidae	Squamata	LC
20	Indian Gamma Snake	Boiga trigonata	Schneider, 1802	Colubridae	Squamata	LC
21	Banded Racer	Argyrogena fasciolata	Shaw, 1802	Colubridae	Squamata	LC
22	Spotted Whip Snake	Hemorrhois ravergieri	Ménétriés, 1832	Colubridae	Squamata	LC
23	Common Wolf Snake	Lycodon aulicus	Linnaeus, 1758	Colubridae	Squamata	LC
24	Barred Wolf Snake	Lycodon striatus	Shaw, 1802	Colubridae	Squamata	LC
25	Sindh Awl-headed Snake	Lytorhynchus paradoxus	Günther, 1875	Colubridae	Squamata	LC
26	Afghan Awl headed snake	Lytorhynchus ridgewayi	Boulenger, 1887	Colubridae	Squamata	LC
27	Wadi Racer	Platyceps rhodorachis	Jan, 1865	Colubridae	Squamata	LC
28	Hardwicke's Rat Snake	Platyceps ventromaculatus	Gray, 1834	Colubridae	Squamata	LC
29	Common Kukri Snake	Oligodon russelius	Shaw, 1802	Colubridae	Squamata	LC

30	Streaked Kukri Snake	Oligodon taeniolatus	Jerdon, 1853	Colubridae	Squamata	LC
31	Oriental rat snake	Ptyas mucosa	Linnaeus 1758	Colubridae	Squamata	LC
32	Red Spotted Royal Snake	Spalerosophis arenarius	Boulenger, 1890	Colubridae	Squamata	LC
33	Diadem Snake	Spalerosophis diadema	Schlegel, 1837	Colubridae	Squamata	LC
34	Dark-headed dwarf racer	Eirenis persicus	Anderson, 1872	Colubridae	Squamata	LC
35	Indian Desert Tiger Snake	Telescopus rhinopoma	Blanford, 1874	Colubridae	Squamata	DD
36	Common Krait	Bungarus caeruleus	(Schneider, 1801)	Elapidae	Squamata	LC
37	Sindh Krait	Bungarus sindanus	Boulenger, 1847	Elapidae	Squamata	LC
38	Northern Punjab krait	Bungarus sindanus razai	Khan, 1985	Elapidae	Squamata	LC
39	Indian Cobra	Naja naja	Linnaeus, 1758	Elapidae	Squamata	LC
40	Central Asian Cobra	Naja oxiana	Eichwald, 1831	Elapidae	Squamata	NT
41	Stoke's Sea Snake	Astrotia stokesii	Gray, 1846	Elapidae	Squamata	LC
42	Beaked Sea Snake	Hydrophis schistosa	Daudin, 1803	Elapidae	Squamata	LC
43	Dwarf Sea Snake	Hydrophis caerulescens	Shaw, 1802	Elapidae	Squamata	LC
44	Annulated Sea Snake	Hydrophis cyanocinctus	Daudin, 1803	Elapidae	Squamata	LC
45	Striped Sea Snake	Hydrophis fasciatus	Schneider, 1799	Elapidae	Squamata	LC
46	Arabian Gulf Sea Snake	Hydrophis lapemoides	Gray, 1849	Elapidae	Squamata	LC
47	Bombay Sea Snake	Hydrophis mamillaris	Daudin, 1803	Elapidae	Squamata	DD
48	Ornate Sea Snake	Hydrophis ornatus	Gray, 1842	Elapidae	Squamata	LC
49	Yellow Sea Snake	Hydrophis spiralis	Shaw, 1802	Elapidae	Squamata	LC
50	Spine-bellied Sea Snake	Lapemis curtus	Shaw, 1802	Elapidae	Squamata	LC
51	Gunther's Sea Snake	Microcephalophis cantoris	Günther, 1864	Elapidae	Squamata	DD
52	Graceful Small-headed Sea Snake	Microcephalophis gracilis	Shaw, 1802	Elapidae	Squamata	LC
53	Yellow-bellied Sea Snake	Hydrophis platurus	Linnaeus, 1766	Elapidae	Squamata	LC
54	Viperine Sea Snake	Hydrophis viperinus	Schmidt, 1852	Elapidae	Squamata	LC
55	Rough-tailed Sand Boa	Eryx conicus	Schneider, 1801	Erycidae	Squamata	NT
56	Red Sand Boa	Eryx johnii	Russell, 1801	Erycidae	Squamata	NT
57	Common Leopard Gecko	Eublepharis macularius	Blyth, 1854	Eublepharidae	Squamata	LC
58	Persian Spider Gecko	Agamura persica	Duméril, 1856	Gekkonidae	Squamata	LC
59	Baluch Ground Gecko	Bunopus tuberculatus	Blanford, 1874	Gekkonidae	Squamata	LC
60	Nikolsky's Spider Gecko	Cyrtopodion agamuroides	Nikolsky, 1900	Gekkonidae	Squamata	LC

61	Kachh Gecko	Cyrtopodion kachhense	Stoliczka, 1872	Gekkonidae	Squamata	LC
62	Sulaiman Range gecko	Cyrtopodion kohsulaimanai	Khan, 1991	Gekkonidae	Squamata	LC
63	Ingoldby's Stone Gecko	Cyrtopodion kachhense ingoldbyi	Khan, 1997	Gekkonidae	Squamata	LC
64	Rough Bent-toed Gecko	Cyrtopodion scabrum	Heyden, 1827	Gekkonidae	Squamata	LC
65	Brooke's House Gecko	Hemidactylus brookii	Gray, 1845	Gekkonidae	Squamata	LC
66	Yellow-bellied House Gecko	Hemidactylus flaviviridis	Rüppell, 1835	Gekkonidae	Squamata	LC
67	Common House Gecko	Hemidactylus frenatus	Dumeril & Bibron, 1836	Gekkonidae	Squamata	LC
68	Leschenault's Gecko	Hemidactylus leschenaultii	Duméril and Bibron, 1836	Gekkonidae	Squamata	LC
69	Persian Gecko	Hemidactylus persicus	Anderson, 1872	Gekkonidae	Squamata	LC
70	Dakota's Leaf-toed Gecko	Hemidactylus triedrus	Daudin, 1802	Gekkonidae	Squamata	LC
71	Mediterranean Gecko	Hemidactylus turcicus	Linnaeus, 1758	Gekkonidae	Squamata	LC
72	Red Sea House Gecko	Hemidactylus robustus	Heyden 1827	Gekkonidae	Squamata	LC
73	Pakistan Fan-fingered Gecko	Ptyodactylus homolepis	Heyden 1827	Gekkonidae	Squamata	DD
74	Sind Gecko	Crossobamon orientalis	Blanford, 1876	Gekkonidae	Squamata	LC
75	Soan Gecko	Cyrtopodion indusoani	Khan, 1988	Gekkonidae	Squamata	LC
76	Flat-tail Gecko	Teratolepis fasciata	Blyth, 1853	Gekkonidae	Squamata	DD
77	Persian Pigmy Gecko	Tropiocolotes persicus	(Nikolsky, 1903)	Gekkonidae	Squamata	LC
78	Sind River Mud Snake	Enhydris pakistanicus	Mertens, 1959	homalopsidae	Squamata	LC
79	Indian Fringe-fingered lizard	Acanthodactylus cantoris	Günther, 1864	Lacertidae	Squamata	LC
80	Blandford's Fringe-toed Lizard	Acanthodactylus blanfordii	Boulenger, 1918	Lacertidae	Squamata	LC
81	Yellow-tailed Fringe-fingered Lizard	Acanthodactylus micropholis	Blanford, 1874	Lacertidae	Squamata	LC
82	Persian Racerunner	Eremias persica	Blanford, 1874	Lacertidae	Squamata	LC
83	Cholistani Racerunner	Eremias cholistanica	Baig and Masroor 2006	Lacertidae	Squamata	DD
84	Spotted Lacerta	Mesalina brevirostris	Blanford, 1874	Lacertidae	Squamata	LC
85	Smooth spectacled Lacerta	Mesalina watsonana	Stoliczka, 1872	Lacertidae	Squamata	LC
86	Punjab Snake-eyed Lacerta	Ophisops jerdonii	Blyth, 1853	Lacertidae	Squamata	LC
87	Sindh Thread Snake	Myriopholis blanfordii	Boulenger, 1890	Leptotyphlopidae	Squamata	DD
88	Hook-snouted Worm Snake	Myriopholis macrorhyncha	Jan, 1862	Leptotyphlopidae	Squamata	LC
89	Buff Striped Keelback	Amphiesma stolatum	Linnaeus, 1758	Natricidae	Squamata	LC
90	Painted Keelback	Xenochrophis cerasogaster	Cantor, 1839	Natricidae	Squamata	VU
91	Checkered Keelback	Fowlea piscator	Schneider, 1799	Natricidae	Squamata	LC

92	Sand Snake	Psammophis condanarus	Merrem, 1820	Psammophiidae	Squamata	LC
93	Leith's Sand Snake	Psammophis leithii	Günther, 1869	Psammophiidae	Squamata	LC
94	Forskål's Sand Snake	Psammophis schokari	Forskål, 1775	Psammophiidae	Squamata	LC
95	Indian Rock Python	Python molurus	Linnaeus, 1758	Pythonidae	Squamata	NT
96	Minor Snake-eyed Skink	Ablepharus grayanus	Stoliczka, 1872	Scincidae	Squamata	LC
97	Asian Snake-eyed Skink	Ablepharus pannonicus	Fitzinger, 1823	Scincidae	Squamata	LC
98	Ocellated Skink	Chalcides ocellatus	Forskål, 1775	Scincidae	Squamata	LC
99	Striped Grass Mabuya	Eutropis dissimilis	Hallowell, 1860	Scincidae	Squamata	LC
100	Bronze Mabuya	Eutropis macularia	Blyth, 1853	Scincidae	Squamata	LC
101	Ribbon-sided Skink	Eurylepis taeniolatus	Blyth, 1854	Scincidae	Squamata	LC
102	Common Dotted Garden Skink	Lygosoma punctata	Linnaeus, 1766	Scincidae	Squamata	LC
103	Orange-tail Skink	Novoeumeces blythianus	Anderson, 1871	Scincidae	Squamata	LC
104	Red-strip Skink	Novoeumeces zarudnyi	Nikolsky, 1900	Scincidae	Squamata	DD
105	Blanford's Snake Skink	Ophiomorus blanfordi	Boulenger, 1887	Scincidae	Squamata	LC
106	Three-fingered Sand-fish	Ophiomorus raithmai	Anderson and Leviton, 1966	Scincidae	Squamata	LC
107	Indian Sand-swimmer	Ophiomorus tridactylus	(Blyth, 1853)	Scincidae	Squamata	LC
108	Himalayan Ground Skink	Asymblepharus himalayanus	(Günther, 1864)	Scincidae	Squamata	LC
109	Small-scaled Wonder Gecko	Teratoscincus microlepis	Nokolsky, 1899	Sphaerodactylidae	Squamata	LC
110	Brahminy blind Snake	Indotyphlops braminus	Daudin, 1803	Typhlopidae	Squamata	LC
111	Stoliczka's Slender Blind Snake	Indotyphlops porrectus	Stoliczka, 1871	Typhlopidae	Squamata	LC
112	Yellow Monitor	Varanus flavescens	(Hardwicke and Gray, 1827)	Varianidae	Squamata	EN
113	Indian or Bengal Monitor Lizard	Varanus bengalensis	Daudin, 1802	Varianidae	Squamata	NT
114	Desert Monitor	Varanus griseus caspius	Eichwald, 1831	Varianidae	Squamata	LC
115	Sindh Saw-scaled Viper	Echis carinatus	Stemmler, 1964	Viperidae	Squamata	LC
116	Astola Saw-scaled Viper	Echis carinatus astolae	Mertens, 1969	Viperidae	Squamata	LC
117	Persian Horned Viper	Pseudocerastes persicus	Duméril, 1854	Viperidae	Squamata	LC
118	Western Russel's Viper	Daboia russelii	Shaw & Nodder, 1797	Viperidae	Squamata	LC
119	Green Turtle	Chelonia mydas	Linnaeus, 1758	Cheloniidae	Testudines	EN
120	Hawksbill Turtle	Eretmochelys imbricata	Linnaeus, 1766	Cheloniidae	Testudines	CR
121	Olive Ridley Turtle	Lepidochelys olivacea	Eschscholtz, 1824	Cheloniidae	Testudines	VU
122	Lagger Headed Turtle	Caretta caretta	Linnaeus, 1758	Cheloniidae	Testudines	VU

123	Leatherback Sea Turtle	Dermochelys coriacea	Vandelli, 1761	Dermochelyidae	Testudines	VU
124	Spotted Pond Turtle	Geoclemys hamiltonii	Gray, 1831	Geoemydidae	Testudines	EN
125	Crowned River Turtle	Hardella thurjii	Gray, 1870	Geoemydidae	Testudines	EN
126	Brown Roofed Turtle	Kachuga smithii	Gray, 1863	Geoemydidae	Testudines	NT
127	Indian Roofed Turtle	Pangshura tecta	Gray, 1831	Geoemydidae	Testudines	VU
128	Afghan Tortoise	Testudo horsfieldii	Gray, 1844	Testudinidae	Testudines	VU
129	Indian Star Tortoise	Geochelone elegans	Schopff, 1795	Testudinidae	Testudines	VU
130	Indian Narrow-headed Softshell Turtle	Chitra indica	Gray, 1831	Trionychidae	Testudines	EN
131	Indian Soft-shell Turtle	Aspideretes gangeticus	Cuvier, 1825	Trionychidae	Testudines	EN
132	Indian Peacock Softshell Turtle	Nilssonia hurum	Gray, 1831	Trionychidae	Testudines	EN
133	Indian Flapshell Turtle	Lissemys punctata	Lacepede, 1788	Trionychidae	Testudines	VU

Table 2: Amphibian species in Ramsar sites of Pakistan.

Sr.	Common Name	Scientific name	Species authority	Family	Order	Status
1	Olive toad	Duttaphrynus olivaceus	Blanford, 1874	Bufonidae	Anura	LC
2	Indus valley toad	Duttaphrynus stomaticus	Lütkin, 1863	Bufonidae	Anura	LC
3	Swat green toad	Pseudepidalea pseudoraddei	Mertens, 1971	Bufonidae	Anura	LC
4	Ant frog	Microhyla ornata	Dúmeril and Bibron, 1841	Microhylidae	Anura	LC
5	Murray's Frog	Chrysopaa sternosignata	Murray, 1885	Ranidae	Anura	LC
6	Skipper Frog	Euphlyctis cyanophlyctis	Schneider, 1799	Ranidae	Anura	LC
7	Boie's Wart Frog	Fejervarya limnocharis	Dubois, 1987	Ranidae	Anura	LC
8	Bombay Wart Frog	Minervarya syhadrensis	Annandale, 1919	Ranidae	Anura	LC
9	Indian Bullfrog	Hoplobatrachus tigerinus	Daudin, 1802	Ranidae	Anura	LC
10	Indian Burrowing frog	Sphaerotheca breviceps	Schneider, 1799	Ranidae	Anura	LC